MATH 303 — Measures and Integration
Final Exam Solutions

Problem 1. Give a full statement of the following theorems related to integration of functions:
e Monotone convergence theorem
e Fatou’s lemma

Prove that the monotone convergence theorem and Fatou’s lemma are equivalent. That is, give a
proof of the following two implications:

e (monotone convergence theorem) = (Fatou’s lemma)

e (Fatou’s lemma) — (monotone convergence theorem)

Solution: The theorem statements are given in the lecture notes (Theorems 3.10 and 3.13).

MCT = Fatou: See the proof of Fatou’s lemma (Theorem 3.13) in the lecture notes.

Fatou =— MOCT: Let 0 < f; < fo < ... be an increasing sequence of nonnegative
measurable functions defined on a measure space (X, B, ). Let f = limy, o frn. We want to
show

[ £ du=tim [ 5 dn (1)
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By monotonicity of the integral,
[ ran= [ 5.
X X
for each n € N, so
f dp > limsup / fn dp. (2)
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On the other hand, by Fatou’s lemma,

/ fdu< liminf/ fn dpu. (3)
X n—0o0 X

The inequalities and combined establish the desired identity .

Problem 2. In this course, we defined an outer measure to be a function p* : Z(X) — [0, o0
such that p*(0) = 0 and p* is monotone and countably subadditive.

(a) What does it mean for p* to be monotone?
(b) What does it mean for p* to be countably subadditive?

(c) Show that a function p* : Z(X) — [0,00] is an outer measure if and only if p*(0)) = 0 and
u* satisfies the following property: if A C X, (By)nen is a sequence of subsets of X, and

A C U, en B, then p*(A) <3700 p*(Bn).



Solution: (a) Monotone: if E C F', then p*(E) < p*(F).

(b) Countably subbaditive: if (Ey,)nen is a sequence of subsets of X, then p* (U,eny En) <
> et W (En).

(c) Suppose p* is an outer measure. Let A C X, and suppose (By)nen is a sequence of
subsets of X such that A C (J,, oy Bn. Applying monotonicity, p*(A4) < p* (U,ey Bn). Then
applying countable subadditivity, u* (UneN Bn) < > W (By). Combining these two steps,
we conclude p*(A) < 3% p*(By).

Conversely, suppose p* satisfies p*(0) = 0 and if A C X, (By)nen is a sequence of subsets
of X, and A C |J,,cy Bn, then p*(A) < 377 p*(By,). We must check that p* is monotone and
countably subadditive.

e MONOTONE: Suppose E C F. Let By = F and B,, = () for n > 2. Then E C |J,,cy Bn,
so p(E) <3207 p(By) = p(F).

e COUNTABLY SUBADDITIVE: Suppose (E,)nen is a sequence of subsets of X. Then
UnEN En C UnEN En’ 50 ,LL* (UnEN E") < ZZO:I IU’*(ETL)

Problem 3. Let X be an uncountable set.

(a) Prove that the collection B = {E C X : E is countable or X \ E is countable} is a o-algebra
on X.

(b) Define a function p : B — {0,1} by u(E) = 0 if E is countable and pu(E) = 1if X \ E is
countable. Prove that y is a measure.

(c) Describe the collection of measurable functions from X to R and compute their integrals with
respect to p.

Solution: In the solution below, we say that a set E is co-countable if its complement X \ E
is countable.

(a) Let us check each of the axioms of a o-algebra.
e X\ X =0 is countable, so X € B.

e The condition “FE is countable or X \ F is countable” is symmetric in a set F and its
complement, so B is closed under complements.

e Let (E,)nen be a sequence of elements of B. If each of the sets E, is countable, then
their union J,,cy En is also countable. On the other hand, if X \ E,, is countable for

some ng € N, then X \ U, .y En C X \ Ey, is countable. In either case, |, . En € B.

neN neN

(b) The empty set is countable, so p() = 0. Suppose (E,)nen is a sequence of pairwise
disjoint measurable sets, and let E = | |, .y En. We want to show pu(E) = Y77, u(Ey,). We
split into two cases.

Case 1: E, is countable for every n € N.
Then E is also countable, so u(E) =0 and > 7 u(Ep) = 0o 0=0.




Case 2: X \ E,, is countable for some ng € N.
Since the sets are disjoint, if n # ng, then E,, C X \ E,, is countable. Therefore,

1, if n =ng;
w(En) = .
0, if n # no.

Hence, > >, u(En) = 1. Moreover, X \ E C X \ E,, is countable, so u(E) = 1.

(c) Claim 1: A function f : X — R is measurable if and only if there exists ¢ € R such that
{f = c} is co-countable.

Proof of Claim 1. First, suppose {f = ¢} is co-countable. Let F = {f = ¢}, and let
S = X\ E. Then we can express f as a countable sum by writing f = clg + > cg f(2)1(4)-
A countable sum of measurable functions is measurable, and scalar multiples of measurable
functions are measurable, so it suffices to check that each of the functions 1p and 1,y is
measurable. But £ € B by assumption, and each of the sets {z} is countable so belongs to B.
Indicator functions of measurable sets are measurable, so we conclude that f is a measurable
function.

Conversely, suppose f is measurable. Then {f > t} € B for every t € R. By continuity of
p from below, lim,, o u({f > n}) = 1. Similarly, by continuity from above (which applies
since p is a finite measure), we have lim, oo u({f > n}) = w(@) = 0. Since p only takes
values 0 and 1, this means that {f > ¢} is countable for all sufficiently large ¢ € R and co-
countable for all sufficiently small ¢ € R. Let ¢ = sup{t € R: {f > t} is co-countable}. Since
{f >ct =Npen{f >c— L}, we have p({f > c}) = 1 by continuity from above. Similarly,
writing {f > ¢} = U,en {f > c+ %} and applying continuity from below, pu({f > c}) = 0.
Hence, {f =c} = {f > ¢} \ {f > ¢} is co-countable. O

Claim 2: Given a measurable function f : X — R, let ¢ € R such that {f = ¢} is co-
countable by claim 1. Then [, f du = c.

Proof of Claim 2. Another way of saying {f = ¢} is co-countable is to say that f = ¢ p-a.e.
Therefore, f and ¢ have the same integral, so fX fdu= fX cdp=cu(X)=c O

Problem 4. Let (X,B,u) be a measure space, and let f : X — C be a measurable function.
Suppose f is integrable (with respect to p). Prove that for any ¢ > 0, there exists M > 0 such that

/ |fl dp < e.
{If1>M}

Solution: Method 1: Defining a measure. Define v : B — [0,00) by v(E) = [ |f] du.
Note that v is a finite measure on (X, B), since f is integrable. For each n € N, let E,, = {|f| >
n}. Note that £y O E; O ... and (),cy En = 0. Then by continuity of the measure v from
above (and finiteness of v), lim,_,o v(E,) = v(#) = 0. Thus, given € > 0, there exists M € N
such that n > M = v(E,) < . This value of M has the desired property.

Method 2: Dominated convergence. Let E, = {|f| > n}, and let g, = |f|1g,. Note
that (,cy En = 0, so 1, (z) — 0 as n — oo for each x € X. Therefore, g, — 0 pointwise.




Moreover, |g,| < |f| € L*(u) for every n € N. Thus, by the dominated convergence theorem,
fX gn dpp — 0. Given € > 0, we may therefore find M € N such that

/ Iflduz/gMdu<€-
{If1>M} X

Method 3: Monotone convergence. Define a sequence of functions g, : X — [0, oo] by
9n = |f|- Lf|fj<n} sO that 0 < g1 < g2 < ... and limy, 0 gn = f. By the monotone convergence
theorem,

lim [ gn du=/ |f] dp.
X X

n—oo

Since f is integrable, the integral on the right hand size is finite. Thus, given € > 0, we may

find M € N such that
/\fldu—/gMd/Ka
X X

But from the definition of ga; and linearity of the integral, we have

/ Iflduz/ Iflduz/lf!du—/ IfIdMZ/Ifldu—/gMdu,
{If|>M} X\{|fI<M} X {If1<M} X X

so we have found the desired value of M.

Problem 5. Let (X, B) be a measurable space, let 1 : B — [0,00] be a measure, and let v : B —
[0,00) be a finite measure. Prove that the following are equivalent:

(i) for any F € B, if u(E) = 0, then v(F) = 0;
(ii) for any € > 0, there exists § > 0 such that if £ € B and u(F) < 0, then v(F) < e.

Show that the implication (i) = (ii) may fail if v is an infinite measure.

Solution: (i) = (ii).

Method 1: Borel-Cantelli. Suppose (i) holds, and suppose for contradiction that (ii)
fails. Then there exists ¢ > 0 and sets Ep, Eo,--- € B with pu(FE,) < 27" such that v(E,) > ¢
for every n € N. Let £ = (,cxy Up>i En- By the Borel-Cantelli lemma, p(E) = 0, so by (i),
we have v(E) = 0. However, since v is finite, we can apply continuity from above to deduce

v(F)= lim v U E, | > limsupv(Eg) > e.

k—
S n>k k—o0

This is a contradiction.

Method 2: Radon—Nikodym. Suppose (i) holds. We will first reduce to the case that p
is o-finite. Note that (ii) is equivalent to the statement: if (F,),en is a sequence of measurable
sets and lim,,_,o0 p(Ey) = 0, then lim,, - v(E,) = 0. Given a sequence of measurable sets
(En)nen with lim, o p(E,) = 0, we may assume that p(FE,) < oo for all n € N by disregarding
finitely many elements of the sequence if necessary. Then the set Xo = |J,,cr En is a o-finite
set for u, so by restricting the problem to Xy C X, we may assume without loss of generality




that u is a o-finite measure.

Now by the Radon—Nikodym theorem, let f : X — [0, 00] be a measurable function such
that dv = f du. Since v is a finite measure, f € L'(u). Let ¢ > 0. By the definition of
the integral, there exists a simple function 0 < s < f such that fX s dp > fX fdu— 5. Let
M = maxgex |s(z)| and put § = If £ € Band u(E) < 9§, then

e
2maxzex |s(z)|

V(E):/Efdu:/Esdu—i—/E(f—s)du<5.

—
<Mu(E) <

N

(i) = (i). Conversely, assume (ii) holds, and let E € B with u(E) = 0. Then for any
e >0, let 0 be given as in (ii). Since u(E) < J, we conclude v(F) < . But ¢ was arbitrary, so
v(E) =0.

For a counterexample, one may take p to be any measure for which there exists sets of
arbitrarily small positive u-measure (for example, the Lebesgue measure on [0, 1]) and define
v =00 - u. Then (i) is satisfied but (ii) fails.

Problem 6. Consider the set of integers Z as a discrete topological space.
(a) Describe the space C.(Z) of compactly supported continuous functions on Z.
(b) Describe the positive linear functionals on C,(Z).

(c) Let ¢ : C.(Z) — C be a positive linear functional, and let u be the Radon measure representing
¢ via the Riesz representation theorem. When is p a finite measure? (Give a characterization
in terms of properties of ¢.)

Solution: (a) Every function on a discrete space is continuous. Moreover, a subset K C Z is
compact if and only if K is finite. Therefore, C.(Z) is the family of functions f : Z — C that
vanish outside of a finite set. This can be identified with the direct sum €, ., C by taking as
a basis the functions e, = 1y,;.

(b) A linear functional is determined by its values on a basis. Given a positive linear
functional ¢ : C.(Z) — C, define a, : Z — [0,00) by a,(n) = ¢(e,). Note that a,(n) > 0,
since e, > 0 and ¢ is positive.

On the other hand, given an arbitrary nonnegative function a : Z — [0, 00), we may define
a positive linear functional ¢, : Co(Z) — C by ¢u(f) = > ,cz f(n)a(n). (This sum has only
finitely many nonzero terms so is well-defined.) Linearity of the functional is clear from the
definition, as is positivity, since a sum of nonnegative numbers will be nonnegative.

We have therefore identified the space of positive linear functionals with the space of non-
negative functions a : Z — [0, 00).

(c) From the description in (b), let a : Z — [0,00) such that ¢(f) = >,z f(n)a(n).
If E C Z is a finite set, then 1 € C.(X), so u(E) = ¢(1g) = > ,cpa(n). Therefore,
by continuity from below of the measure u, we have p(Z) = limy_yoo (Z N [-N,N]) =
Hmy e S0 ya(n) = 2 a(n). Tt follows that u is a finite measure if and only if




S>> . a(n) < oo. In other words, y is finite if and only if a € ¢1(Z).

Problem 7. Let X be an LCH space and p : Borel(X) — [0, 00] a Radon measure on X. Prove
that if K C X is compact, then

MM:m%Lf@jeQ@ﬂbﬁ}

Solution: Let K C X be compact. If f € C.(X) and K < f, then 1x < f, so u(K) =
Jx 1k du < [y f dp by monotonicity of the integral.

Let us prove the other inequality. Note that u(K) < oo, since p is a locally finite measure.
Let ¢ > 0. Since p is outer regular, there exists an open set V C X such that K C V
and u(V) < pu(K) + e. By Urysohn’s lemma, let f € C.(X) with K < f < V. Then
Jx fdu< [ 1y dp=p(V) < u(K) + €. But € > 0 was arbitrary, so this proves

inf{/Xf di: | € Co(X), K < f} < u(K).

Problem 8. Let F,G : R — R be increasing, right-continuous functions with F'(0) = G(0) = 0.
Let up and pa be the Lebesgue—Stieltjes measures with distribution functions F' and G respectively.
Show that if either F'is continuous or G is continuous, then

/ F@m+/ G dpr = FH)GO) — F(a)G(a).
(a,b] (a,b]

Solution: Both the left hand side and the right hand side are symmetric in F' and G, so we
will assume that F' is continuous.

Consider the region R = {(z,y) € R? : a < 2 < y < b}. Let ur ® ug denote the
product measure of pp and ug. (This measure is uniquely determined, since Lebesgue—Stieltjes
measures are o-finite.) By Tonelli’s theorem, we may compute (ur ® pug)(R) as an iterated
integral in two ways:

(hr @ pc)(R) = | 1gd(pr ® pc) = pr((a,y) duc(y) = F dug — F(a) (G(b) — G(a)).
R2 —

a,b (a,b]
(0 F(y)—F(a)
and
(ur @ 1) (R) = [ U dler 9 16) = | pal(ab) dur(e) = GO) (F6) = F@) - | G dur.
R2 (a,b] m (a,b]

Combining these two computations, we have

/( ; Fdug + s G dpr = G(b) (F(b) — F(a)) + F(a) (G(b) — G(a)) = F(b)G(b) — F(a)G(a)

as desired.




