
MATH 303 – Measures and Integration
Final Exam Solutions

Problem 1. Give a full statement of the following theorems related to integration of functions:

• Monotone convergence theorem

• Fatou’s lemma

Prove that the monotone convergence theorem and Fatou’s lemma are equivalent. That is, give a
proof of the following two implications:

• (monotone convergence theorem) =⇒ (Fatou’s lemma)

• (Fatou’s lemma) =⇒ (monotone convergence theorem)

Solution: The theorem statements are given in the lecture notes (Theorems 3.10 and 3.13).

MCT =⇒ Fatou: See the proof of Fatou’s lemma (Theorem 3.13) in the lecture notes.

Fatou =⇒ MCT: Let 0 ≤ f1 ≤ f2 ≤ . . . be an increasing sequence of nonnegative
measurable functions defined on a measure space (X,B, µ). Let f = limn→∞ fn. We want to
show ∫

X
f dµ = lim

n→∞

∫
X
fn dµ. (1)

By monotonicity of the integral, ∫
X
f dµ ≥

∫
X
fn dµ

for each n ∈ N, so ∫
X
f dµ ≥ lim sup

n→∞

∫
X
fn dµ. (2)

On the other hand, by Fatou’s lemma,∫
X
f dµ ≤ lim inf

n→∞

∫
X
fn dµ. (3)

The inequalities (2) and (3) combined establish the desired identity (1).

Problem 2. In this course, we defined an outer measure to be a function µ∗ : P(X) → [0,∞]
such that µ∗(∅) = 0 and µ∗ is monotone and countably subadditive.

(a) What does it mean for µ∗ to be monotone?

(b) What does it mean for µ∗ to be countably subadditive?

(c) Show that a function µ∗ : P(X) → [0,∞] is an outer measure if and only if µ∗(∅) = 0 and
µ∗ satisfies the following property: if A ⊆ X, (Bn)n∈N is a sequence of subsets of X, and
A ⊆

⋃
n∈NBn, then µ∗(A) ≤

∑∞
n=1 µ

∗(Bn).



Solution: (a) Monotone: if E ⊆ F , then µ∗(E) ≤ µ∗(F ).

(b) Countably subbaditive: if (En)n∈N is a sequence of subsets of X, then µ∗ (⋃
n∈NEn

)
≤∑∞

n=1 µ
∗(En).

(c) Suppose µ∗ is an outer measure. Let A ⊆ X, and suppose (Bn)n∈N is a sequence of
subsets of X such that A ⊆

⋃
n∈NBn. Applying monotonicity, µ∗(A) ≤ µ∗ (⋃

n∈NBn

)
. Then

applying countable subadditivity, µ∗ (⋃
n∈NBn

)
≤

∑∞
n=1 µ

∗(Bn). Combining these two steps,
we conclude µ∗(A) ≤

∑∞
n=1 µ

∗(Bn).
Conversely, suppose µ∗ satisfies µ∗(∅) = 0 and if A ⊆ X, (Bn)n∈N is a sequence of subsets

of X, and A ⊆
⋃

n∈NBn, then µ∗(A) ≤
∑∞

n=1 µ
∗(Bn). We must check that µ∗ is monotone and

countably subadditive.

• monotone: Suppose E ⊆ F . Let B1 = F and Bn = ∅ for n ≥ 2. Then E ⊆
⋃

n∈NBn,
so µ∗(E) ≤

∑∞
n=1 µ

∗(Bn) = µ∗(F ).

• countably subadditive: Suppose (En)n∈N is a sequence of subsets of X. Then⋃
n∈NEn ⊆

⋃
n∈NEn, so µ∗ (⋃

n∈NEn

)
≤

∑∞
n=1 µ

∗(En).

Problem 3. Let X be an uncountable set.

(a) Prove that the collection B = {E ⊆ X : E is countable or X \ E is countable} is a σ-algebra
on X.

(b) Define a function µ : B → {0, 1} by µ(E) = 0 if E is countable and µ(E) = 1 if X \ E is
countable. Prove that µ is a measure.

(c) Describe the collection of measurable functions from X to R and compute their integrals with
respect to µ.

Solution: In the solution below, we say that a set E is co-countable if its complement X \ E
is countable.

(a) Let us check each of the axioms of a σ-algebra.

• X \X = ∅ is countable, so X ∈ B.

• The condition “E is countable or X \ E is countable” is symmetric in a set E and its
complement, so B is closed under complements.

• Let (En)n∈N be a sequence of elements of B. If each of the sets En is countable, then
their union

⋃
n∈NEn is also countable. On the other hand, if X \ En0 is countable for

some n0 ∈ N, then X \
⋃

n∈NEn ⊆ X \ En0 is countable. In either case,
⋃

n∈NEn ∈ B.

(b) The empty set is countable, so µ(∅) = 0. Suppose (En)n∈N is a sequence of pairwise
disjoint measurable sets, and let E =

⊔
n∈NEn. We want to show µ(E) =

∑∞
n=1 µ(En). We

split into two cases.

Case 1: En is countable for every n ∈ N.
Then E is also countable, so µ(E) = 0 and

∑∞
n=1 µ(En) =

∑∞
n=1 0 = 0.



Case 2: X \ En0 is countable for some n0 ∈ N.
Since the sets are disjoint, if n ̸= n0, then En ⊆ X \ En0 is countable. Therefore,

µ(En) =

{
1, if n = n0;

0, if n ̸= n0.

Hence,
∑∞

n=1 µ(En) = 1. Moreover, X \ E ⊆ X \ En0 is countable, so µ(E) = 1.

(c) Claim 1: A function f : X → R is measurable if and only if there exists c ∈ R such that
{f = c} is co-countable.

Proof of Claim 1. First, suppose {f = c} is co-countable. Let E = {f = c}, and let
S = X \ E. Then we can express f as a countable sum by writing f = c1E +

∑
x∈S f(x)1{x}.

A countable sum of measurable functions is measurable, and scalar multiples of measurable
functions are measurable, so it suffices to check that each of the functions 1E and 1{x} is
measurable. But E ∈ B by assumption, and each of the sets {x} is countable so belongs to B.
Indicator functions of measurable sets are measurable, so we conclude that f is a measurable
function.

Conversely, suppose f is measurable. Then {f > t} ∈ B for every t ∈ R. By continuity of
µ from below, limn→−∞ µ({f > n}) = 1. Similarly, by continuity from above (which applies
since µ is a finite measure), we have limn→∞ µ({f > n}) = µ(∅) = 0. Since µ only takes
values 0 and 1, this means that {f > t} is countable for all sufficiently large t ∈ R and co-
countable for all sufficiently small t ∈ R. Let c = sup{t ∈ R : {f > t} is co-countable}. Since
{f ≥ c} =

⋂
n∈N

{
f > c− 1

n

}
, we have µ({f ≥ c}) = 1 by continuity from above. Similarly,

writing {f > c} =
⋃

n∈N
{
f > c+ 1

n

}
and applying continuity from below, µ({f > c}) = 0.

Hence, {f = c} = {f ≥ c} \ {f > c} is co-countable.

Claim 2: Given a measurable function f : X → R, let c ∈ R such that {f = c} is co-
countable by claim 1. Then

∫
X f dµ = c.

Proof of Claim 2. Another way of saying {f = c} is co-countable is to say that f = c µ-a.e.
Therefore, f and c have the same integral, so

∫
X f dµ =

∫
X c dµ = cµ(X) = c.

Problem 4. Let (X,B, µ) be a measure space, and let f : X → C be a measurable function.
Suppose f is integrable (with respect to µ). Prove that for any ε > 0, there exists M > 0 such that∫

{|f |>M}
|f | dµ < ε.

Solution: Method 1: Defining a measure. Define ν : B → [0,∞) by ν(E) =
∫
E |f | dµ.

Note that ν is a finite measure on (X,B), since f is integrable. For each n ∈ N, let En = {|f | >
n}. Note that E1 ⊇ E2 ⊇ . . . and

⋂
n∈NEn = ∅. Then by continuity of the measure ν from

above (and finiteness of ν), limn→∞ ν(En) = ν(∅) = 0. Thus, given ε > 0, there exists M ∈ N
such that n ≥ M =⇒ ν(En) < ε. This value of M has the desired property.

Method 2: Dominated convergence. Let En = {|f | > n}, and let gn = |f |1En . Note
that

⋂
n∈NEn = ∅, so 1En(x) → 0 as n → ∞ for each x ∈ X. Therefore, gn → 0 pointwise.



Moreover, |gn| ≤ |f | ∈ L1(µ) for every n ∈ N. Thus, by the dominated convergence theorem,∫
X gn dµ → 0. Given ε > 0, we may therefore find M ∈ N such that∫

{|f |>M}
|f | dµ =

∫
X
gM dµ < ε.

Method 3: Monotone convergence. Define a sequence of functions gn : X → [0,∞] by
gn = |f | ·1{|f |≤n} so that 0 ≤ g1 ≤ g2 ≤ . . . and limn→∞ gn = f . By the monotone convergence
theorem,

lim
n→∞

∫
X
gn dµ =

∫
X
|f | dµ.

Since f is integrable, the integral on the right hand size is finite. Thus, given ε > 0, we may
find M ∈ N such that ∫

X
|f | dµ−

∫
X
gM dµ < ε.

But from the definition of gM and linearity of the integral, we have∫
{|f |>M}

|f | dµ =

∫
X\{|f |≤M}

|f | dµ =

∫
X
|f | dµ−

∫
{|f |≤M}

|f | dµ =

∫
X
|f | dµ−

∫
X
gM dµ,

so we have found the desired value of M .

Problem 5. Let (X,B) be a measurable space, let µ : B → [0,∞] be a measure, and let ν : B →
[0,∞) be a finite measure. Prove that the following are equivalent:

(i) for any E ∈ B, if µ(E) = 0, then ν(E) = 0;

(ii) for any ε > 0, there exists δ > 0 such that if E ∈ B and µ(E) < δ, then ν(E) < ε.

Show that the implication (i) =⇒ (ii) may fail if ν is an infinite measure.

Solution: (i) =⇒ (ii).
Method 1: Borel–Cantelli. Suppose (i) holds, and suppose for contradiction that (ii)

fails. Then there exists ε > 0 and sets E1, E2, · · · ∈ B with µ(En) < 2−n such that ν(En) ≥ ε
for every n ∈ N. Let E =

⋂
k∈N

⋃
n≥k En. By the Borel–Cantelli lemma, µ(E) = 0, so by (i),

we have ν(E) = 0. However, since ν is finite, we can apply continuity from above to deduce

ν(E) = lim
k→∞

ν

⋃
n≥k

En

 ≥ lim sup
k→∞

ν(Ek) ≥ ε.

This is a contradiction.

Method 2: Radon–Nikodym. Suppose (i) holds. We will first reduce to the case that µ
is σ-finite. Note that (ii) is equivalent to the statement: if (En)n∈N is a sequence of measurable
sets and limn→∞ µ(En) = 0, then limn→∞ ν(En) = 0. Given a sequence of measurable sets
(En)n∈N with limn→∞ µ(En) = 0, we may assume that µ(En) < ∞ for all n ∈ N by disregarding
finitely many elements of the sequence if necessary. Then the set X0 =

⋃
n∈NEn is a σ-finite

set for µ, so by restricting the problem to X0 ⊆ X, we may assume without loss of generality



that µ is a σ-finite measure.
Now by the Radon–Nikodym theorem, let f : X → [0,∞] be a measurable function such

that dν = f dµ. Since ν is a finite measure, f ∈ L1(µ). Let ε > 0. By the definition of
the integral, there exists a simple function 0 ≤ s ≤ f such that

∫
X s dµ >

∫
X f dµ − ε

2 . Let
M = maxx∈X |s(x)| and put δ = ε

2maxx∈X |s(x)| . If E ∈ B and µ(E) < δ, then

ν(E) =

∫
E
f dµ =

∫
E
s dµ︸ ︷︷ ︸

≤Mµ(E)

+

∫
E
(f − s) dµ︸ ︷︷ ︸

< ε
2

< ε.

(ii) =⇒ (i). Conversely, assume (ii) holds, and let E ∈ B with µ(E) = 0. Then for any
ε > 0, let δ be given as in (ii). Since µ(E) < δ, we conclude ν(E) < ε. But ε was arbitrary, so
ν(E) = 0.

For a counterexample, one may take µ to be any measure for which there exists sets of
arbitrarily small positive µ-measure (for example, the Lebesgue measure on [0, 1]) and define
ν = ∞ · µ. Then (i) is satisfied but (ii) fails.

Problem 6. Consider the set of integers Z as a discrete topological space.

(a) Describe the space Cc(Z) of compactly supported continuous functions on Z.

(b) Describe the positive linear functionals on Cc(Z).

(c) Let φ : Cc(Z) → C be a positive linear functional, and let µ be the Radon measure representing
φ via the Riesz representation theorem. When is µ a finite measure? (Give a characterization
in terms of properties of φ.)

Solution: (a) Every function on a discrete space is continuous. Moreover, a subset K ⊆ Z is
compact if and only if K is finite. Therefore, Cc(Z) is the family of functions f : Z → C that
vanish outside of a finite set. This can be identified with the direct sum

⊕
n∈ZC by taking as

a basis the functions en = 1{n}.

(b) A linear functional is determined by its values on a basis. Given a positive linear
functional φ : Cc(Z) → C, define aφ : Z → [0,∞) by aφ(n) = φ(en). Note that aφ(n) ≥ 0,
since en ≥ 0 and φ is positive.

On the other hand, given an arbitrary nonnegative function a : Z → [0,∞), we may define
a positive linear functional φa : Cc(Z) → C by φa(f) =

∑
n∈Z f(n)a(n). (This sum has only

finitely many nonzero terms so is well-defined.) Linearity of the functional is clear from the
definition, as is positivity, since a sum of nonnegative numbers will be nonnegative.

We have therefore identified the space of positive linear functionals with the space of non-
negative functions a : Z → [0,∞).

(c) From the description in (b), let a : Z → [0,∞) such that φ(f) =
∑

n∈Z f(n)a(n).
If E ⊆ Z is a finite set, then 1E ∈ Cc(X), so µ(E) = φ(1E) =

∑
n∈E a(n). Therefore,

by continuity from below of the measure µ, we have µ(Z) = limN→∞ µ(Z ∩ [−N,N ]) =
limN→∞

∑N
n=−N a(n) =

∑∞
n=−∞ a(n). It follows that µ is a finite measure if and only if



∑∞
n=−∞ a(n) < ∞. In other words, µ is finite if and only if a ∈ ℓ1(Z).

Problem 7. Let X be an LCH space and µ : Borel(X) → [0,∞] a Radon measure on X. Prove
that if K ⊆ X is compact, then

µ(K) = inf

{∫
X
f dµ : f ∈ Cc(X),K ≺ f

}
.

Solution: Let K ⊆ X be compact. If f ∈ Cc(X) and K ≺ f , then 1K ≤ f , so µ(K) =∫
X 1K dµ ≤

∫
X f dµ by monotonicity of the integral.

Let us prove the other inequality. Note that µ(K) < ∞, since µ is a locally finite measure.
Let ε > 0. Since µ is outer regular, there exists an open set V ⊆ X such that K ⊆ V
and µ(V ) < µ(K) + ε. By Urysohn’s lemma, let f ∈ Cc(X) with K ≺ f ≺ V . Then∫
X f dµ ≤

∫
X 1V dµ = µ(V ) < µ(K) + ε. But ε > 0 was arbitrary, so this proves

inf

{∫
X
f dµ : f ∈ Cc(X),K ≺ f

}
≤ µ(K).

Problem 8. Let F,G : R → R be increasing, right-continuous functions with F (0) = G(0) = 0.
Let µF and µG be the Lebesgue–Stieltjes measures with distribution functions F and G respectively.
Show that if either F is continuous or G is continuous, then∫

(a,b]
F dµG +

∫
(a,b]

G dµF = F (b)G(b)− F (a)G(a).

Solution: Both the left hand side and the right hand side are symmetric in F and G, so we
will assume that F is continuous.

Consider the region R = {(x, y) ∈ R2 : a < x < y ≤ b}. Let µF ⊗ µG denote the
product measure of µF and µG. (This measure is uniquely determined, since Lebesgue–Stieltjes
measures are σ-finite.) By Tonelli’s theorem, we may compute (µF ⊗ µG)(R) as an iterated
integral in two ways:

(µF ⊗ µG)(R) =

∫
R2

1R d(µF ⊗ µG) =

∫
(a,b]

µF ((a, y))︸ ︷︷ ︸
F (y)−F (a)

dµG(y) =

∫
(a,b]

F dµG − F (a) (G(b)−G(a)) .

and

(µF ⊗ µG)(R) =

∫
R2

1R d(µF ⊗ µG) =

∫
(a,b]

µG((x, b])︸ ︷︷ ︸
G(b)−G(x)

dµF (x) = G(b) (F (b)− F (a))−
∫
(a,b]

G dµF .

Combining these two computations, we have∫
(a,b]

F dµG +

∫
(a,b]

G dµF = G(b) (F (b)− F (a))+F (a) (G(b)−G(a)) = F (b)G(b)−F (a)G(a)

as desired.


